Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia.

Identifieur interne : 000472 ( Main/Exploration ); précédent : 000471; suivant : 000473

Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia.

Auteurs : Chuntao Yin [États-Unis] ; Samantha I. Downey [États-Unis] ; Naeh L. Klages-Mundt [États-Unis] ; Sowmya Ramachandran [États-Unis] ; Xianming Chen [États-Unis] ; Les J. Szabo [États-Unis] ; Michael Pumphrey [États-Unis] ; Scot H. Hulbert [États-Unis]

Source :

RBID : pubmed:26238441

Descripteurs français

English descriptors

Abstract

BACKGROUND

The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi.

RESULTS

Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development.

CONCLUSIONS

Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.


DOI: 10.1186/s12864-015-1791-y
PubMed: 26238441
PubMed Central: PMC4524123


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia.</title>
<author>
<name sortKey="Yin, Chuntao" sort="Yin, Chuntao" uniqKey="Yin C" first="Chuntao" last="Yin">Chuntao Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Downey, Samantha I" sort="Downey, Samantha I" uniqKey="Downey S" first="Samantha I" last="Downey">Samantha I. Downey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klages Mundt, Naeh L" sort="Klages Mundt, Naeh L" uniqKey="Klages Mundt N" first="Naeh L" last="Klages-Mundt">Naeh L. Klages-Mundt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Carleton College, One North College St., Northfield, MN, 55057, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Carleton College, One North College St., Northfield, MN, 55057</wicri:regionArea>
<wicri:noRegion>55057</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramachandran, Sowmya" sort="Ramachandran, Sowmya" uniqKey="Ramachandran S" first="Sowmya" last="Ramachandran">Sowmya Ramachandran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pumphrey, Michael" sort="Pumphrey, Michael" uniqKey="Pumphrey M" first="Michael" last="Pumphrey">Michael Pumphrey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hulbert, Scot H" sort="Hulbert, Scot H" uniqKey="Hulbert S" first="Scot H" last="Hulbert">Scot H. Hulbert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. scot_hulbert@wsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26238441</idno>
<idno type="pmid">26238441</idno>
<idno type="doi">10.1186/s12864-015-1791-y</idno>
<idno type="pmc">PMC4524123</idno>
<idno type="wicri:Area/Main/Corpus">000454</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000454</idno>
<idno type="wicri:Area/Main/Curation">000454</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000454</idno>
<idno type="wicri:Area/Main/Exploration">000454</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia.</title>
<author>
<name sortKey="Yin, Chuntao" sort="Yin, Chuntao" uniqKey="Yin C" first="Chuntao" last="Yin">Chuntao Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Downey, Samantha I" sort="Downey, Samantha I" uniqKey="Downey S" first="Samantha I" last="Downey">Samantha I. Downey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klages Mundt, Naeh L" sort="Klages Mundt, Naeh L" uniqKey="Klages Mundt N" first="Naeh L" last="Klages-Mundt">Naeh L. Klages-Mundt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Carleton College, One North College St., Northfield, MN, 55057, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Carleton College, One North College St., Northfield, MN, 55057</wicri:regionArea>
<wicri:noRegion>55057</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramachandran, Sowmya" sort="Ramachandran, Sowmya" uniqKey="Ramachandran S" first="Sowmya" last="Ramachandran">Sowmya Ramachandran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pumphrey, Michael" sort="Pumphrey, Michael" uniqKey="Pumphrey M" first="Michael" last="Pumphrey">Michael Pumphrey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hulbert, Scot H" sort="Hulbert, Scot H" uniqKey="Hulbert S" first="Scot H" last="Hulbert">Scot H. Hulbert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. scot_hulbert@wsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Gene-Environment Interaction (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Glycolysis (genetics)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Diseases (virology)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Triticum (microbiology)</term>
<term>Triticum (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Glycolyse (génétique)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Interaction entre gènes et environnement (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maladies des plantes (virologie)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Triticum (microbiologie)</term>
<term>Triticum (virologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Glycolysis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Glycolyse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Silencing</term>
<term>Gene-Environment Interaction</term>
<term>Genes, Fungal</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Transcription, Genetic</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Extinction de l'expression des gènes</term>
<term>Gènes fongiques</term>
<term>Interaction entre gènes et environnement</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcription génétique</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26238441</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia.</ArticleTitle>
<Pagination>
<MedlinePgn>579</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-1791-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Chuntao</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Downey</LastName>
<ForeName>Samantha I</ForeName>
<Initials>SI</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klages-Mundt</LastName>
<ForeName>Naeh L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Carleton College, One North College St., Northfield, MN, 55057, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramachandran</LastName>
<ForeName>Sowmya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xianming</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Szabo</LastName>
<ForeName>Les J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>US Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pumphrey</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hulbert</LastName>
<ForeName>Scot H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. scot_hulbert@wsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="Y">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="Y">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="Y">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26238441</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-1791-y</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-015-1791-y</ArticleId>
<ArticleId IdType="pmc">PMC4524123</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur J Biochem. 1968 Nov;6(2):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5725503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14381-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 May;24(5):554-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21190437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):451-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Jan 1;3(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Feb;60(3):437-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Jan 20;267(5196):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7824933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Apr;4(4):1204-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15049000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2007 Sep;14(9):1070-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Mar;256(2):273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16499617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 May;74(4):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Sep;22(9):3130-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20884801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Aug;81(4):1008-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21696466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 May 1;5(3):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1992 Mar;17(3):110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1412694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Jun;26(6):633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23441578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Apr;58(4):367-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15114416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Oct;4(10):3007-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Apr;81(6):595-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Nov-Dec;8(6):971-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8664505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jan;43(1):8-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2007 Aug;10(4):326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Mar;11(5):944-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21280219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24350783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1997 May;31(5):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9162115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Sep;25(9):1135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22852807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Aug;5(8):1371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 13;4:520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 17;288(20):14624-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:619832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Yin, Chuntao" sort="Yin, Chuntao" uniqKey="Yin C" first="Chuntao" last="Yin">Chuntao Yin</name>
</noRegion>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
<name sortKey="Downey, Samantha I" sort="Downey, Samantha I" uniqKey="Downey S" first="Samantha I" last="Downey">Samantha I. Downey</name>
<name sortKey="Hulbert, Scot H" sort="Hulbert, Scot H" uniqKey="Hulbert S" first="Scot H" last="Hulbert">Scot H. Hulbert</name>
<name sortKey="Klages Mundt, Naeh L" sort="Klages Mundt, Naeh L" uniqKey="Klages Mundt N" first="Naeh L" last="Klages-Mundt">Naeh L. Klages-Mundt</name>
<name sortKey="Pumphrey, Michael" sort="Pumphrey, Michael" uniqKey="Pumphrey M" first="Michael" last="Pumphrey">Michael Pumphrey</name>
<name sortKey="Ramachandran, Sowmya" sort="Ramachandran, Sowmya" uniqKey="Ramachandran S" first="Sowmya" last="Ramachandran">Sowmya Ramachandran</name>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000472 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000472 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26238441
   |texte=   Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26238441" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020